Activation of Reactions in the Complex Region Using Microwave Irradiation

Dandan Ma,†,# Xuefen Tian,†,# Lifen Guo,† Jie Mou,† Sen Lin,*,‡ and Jianyi Ma*,†

†Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan 610065, China
‡State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, People’s Republic of China

ABSTRACT: Many mode-specific behaviors in the gas phase and at the gas-surface interface have been reported in the past decades. Infrared activation of a reagent vibrational mode is often used to study these reactions. In this work, an inexpensive and easily applied scheme using microwave irradiation is proposed for activating complex-forming reactions by transferring populations between closely spaced resonances. The important combustion reaction of H + O₂ ↔ O + OH is used as a model system to demonstrate the feasibility of the proposed approach. The existence of a nonzero transition dipole moment matrix element between two highly excited resonance states separated by a small energy gap in the model system may allow one to use microwave irradiation to intervene and control the model reaction. The high energy resonance states of the model reaction can also release their energy by photon emission, which is in agreement with the experimentally observed chemiluminescence process.

INTRODUCTION

Mode specificity and nonstatistical behavior are of great importance for many reactions.1–4 Mode specificity means that the reactivity is not the same for different mode excitations, even when the total energies of the system are the same. The reactivity can be described by the rate constant, reaction yield, reaction branch ratio, and other quantities. This phenomenon has been observed in the gas phase and in surface processes. A unimolecular process shows sometimes nonstatistical behaviors.5,6 For example, on the time scale of the reaction, the intramolecular vibrational relaxation (IVR) may not be complete even at an internal energy that is much higher than the dissociation threshold. Only few of the vibrational modes may be active for some multitemolecule systems. For bimolecular reactions involving an atom and a diatomic molecule, Polanyi’s rules suggest that vibrational excitation of the reagent is an efficient means to enhance reactivity if the barrier is in the product channel.6,7 Recently, the sudden vector projection (SVP) model has been advanced8 to explain experimentally observed mode specificity behaviors for bimolecular reactions involving polyatomic reactants.3,9

Because of the nonstatistical features of many chemical reactions, the effectiveness of reactivity promotion is generally not expected to be the same for all internal modes and translational degrees of freedom. It is thus possible to use mode specificity to control reactions by changing the distribution of the rovibrational states of the corresponding molecules. Recently, infrared activation of a reactant vibrational mode has been a common technique to study mode-specific reactions in the laboratory.4,10–12 Unfortunately, high-intensity IR laser sources are relatively expensive, and the required IR frequency strongly depends on the reaction system according to the characteristics of the mode-specific reactions. It is therefore vital to examine whether there exists an alternative approach that avoids the use of an IR laser and enables efficient and convenient promotion of the reaction by taking advantage of mode specificity behaviors.

In many chemical reactions, one or more strongly interacting regions (reaction intermediates) is located between the reactants and products. The densities of the rovibrational states in these regions are usually much higher. Similarly, the anharmonicity and coupling among the different vibrational modes are also very significant in the interaction regions. The high state density and anharmonicity mean that the vibrational behavior changes significantly even with small changes in the energy of the system. For a hypothetical example, for the three vibrational modes of a triatomic molecule, denoted as 1, 2, and 3, the 1^2 P^3^1 and 1^2 P^3^2 high energy states of this molecule may have similar energies but very different vibrational levels, and the anharmonicity of this molecule makes the (1^2 P^3^1 | 1^2 P^3^2) transition dipole moment not equal to zero. Therefore, it is possible to promote the transition between two such states using low-energy and high-intensity photons, such as microwave radiation, which changes the energy level distribution of the reaction intermediate. When these states...
have different vibrational properties, this scheme could be used to promote a reaction. Actually, since 1986, microwave-assisted synthesis in household microwave ovens has become a popular, unconventional technique in organic chemistry in addition to conventional heating methods.13–15 Microwave-assisted reactions are characterized by several features that cannot be reproduced by conventional heating.16,17 In this work, we investigate the possibility of activation of the chemical reaction in the interaction region using microwave irradiation. The H + O2 ↔ O + OH reaction is used as a model reaction to illustrate how microwave irradiation affects the distribution of the vibrational states of the HO2 complex. As shown in Figure 1, the energy scheme indicates that the model reaction occurs adiabatically at a ground state potential

![Figure 1](image_url)

**Figure 1.** Scheme of microwave-involved mode-specific dynamics for H + O2 ↔ O + OH reactions. In the reactant and product region, only infrared light is useful for adjusting the corresponding vibrational states. In the complex region, infrared light, visible light and microwave light can be used to affect the vibrational states.

energy surface characterized by a deep well (2.4 eV relative to the H + O2 asymptote) and large exothermicity.18 The presence of two oxygen atoms results in a high vibrational state (the H + O2 asymptote) and large exothermicity.18 The energy surface characterized by a deep well (2.4 eV relative to the external photon field. In other words, we can control molecular reactions by adding a frequency- and intensity-dependent photon field. Leading to the changes in the reaction probability and the distribution of the vibrational states of the product. The probability distribution of the internal states must depend on the frequency and the intensity of the external photon field. In other words, we can control molecular reactions by adding a frequency- and intensity-dependent external photon field. Unfortunately, due to the abundance of the internal states involved in the molecular reaction under an external photon field, statistical behavior will play an important role, and it is difficult to control a particular vibrational state using this approach.

The control of mode-specific reactions in the interaction region has an additional benefit in that the reaction complex has six additional degrees of freedom (DOF) for the internal vibration compared to that of the reactants for bimolecular reactions in general, and the presence of additional degrees of freedom means that more reaction channels may be activated by the external photon field. (For a bimolecular reactions involving molecule with M atom and molecule with N atom, the total controllable vibrational DOF is 3(M + N) − 12 in the reactant region, however, the value is 3(M + N) − 6 for the reaction complex in the interaction region.) Even for the H + CN ↔ HCN trimeric reaction, which includes an HNC ↔ HCN isomerization process, it is clear that the bending excitation of the HNC angle will promote isomerization, whereas the bending mode does not exist in the H + CN reactants.

Whether microwave irradiation can be used to effectively control reactions depends on two factors. (1) The transition dipole moment between the adjacent quantum states within the range of microwave energy must be large enough. (2) The vibrational mode of the transition must allow adjacent states to change obviously. These two factors must be system dependent. In general, a system that has more atoms and larger polarity is more likely to meet these two conditions. Without the loss of generality, the H + O2 ↔ O + OH triatomic reaction is used to check these two conditions numerically.

## METHODS

In this work, we use the version of the Xu–Xie–Zhang–Lin–Guo (XXZLG) potential energy surface (PES) for the HO2 system to obtain high excited vibrational wave functions. Density functional theory (DFT) and the neural network (NN) method are used to construct the dipole moment surface (DMS). The Lanczos algorithm is used to generate the wave functions and the transition dipole moments for the high excited vibrational states. In detail, for the potential energy surface of the electronic ground state of the HO2 system, we use the XXZLG PES obtained using the Davidson-corrected internally contracted multireference configuration interaction (icMRCI+Q) method with the AVQZ basis set. The dipole moment is calculated by DFT with the M06 functional and PVTZ basis set using the Gaussian 09 program. The DMS is fitted by an NN method using the input layer of Jacobi coordinates of the HO2 system. The explicit form of the base functions in the neurons can be readily found. We choose to use two hidden layers with 15 and 20 neurons, respectively. In each NN fitting, the data are divided randomly into three sets, namely, the training (90% of the data points), validation (5%), and test (5%) sets. All NN fittings are performed using the Levenberg–Marquardt algorithm.

The bound vibrational states up to the reactive region of HO2 are calculated by solving the bound state Schrödinger equation with the total angular momentum \( \hat{j} = 0 \). The corresponding Hamiltonian in the Jacobi coordinates can be expressed as

\[
\hat{H} = -\frac{1}{2m_2} \frac{\partial^2}{\partial r^2} - \frac{1}{2m_1} \frac{\partial^2}{\partial r^2} + \left( \hat{j} - \hat{\jmath} \right)^2 + \frac{\hat{j}^2}{2m_R^2} + \frac{\hat{j}^2}{2m_r^2} + V(R, r, \theta)
\]

(1)
where $R$ is the distance from H to the center of mass of the O$_2$ fragment, $r$ is the O--O internuclear distance, $\theta$ is the angle between $R$ and $r$, $f$ and $j$ are the total and O--O diatomic angular momentum operator, respectively, and $m_{\phi}$ and $m_{\tau}$ are the reduced masses of H--O$_2$ and O$_2$, respectively. The vibrational states are calculated using the Lanczos algorithm.26--28 We use 80 ($R \in [0.5,7.0]$ bohr) and 100 ($r \in [1.0,5.5]$ bohr) discrete variable representation (DVR) grids for both $R$ and $r$.33 For the angular variable, a 160-point Gauss–Legendre grid is used. The large basis set in our calculation makes the result reliable according to our tests about the convergence. Since only the vibrational states corresponding to the odd O--O exchange parity of interest in our case, half of the DVR points in the angle coordinate are discarded in the actual calculations. The converged vibrational energy levels up to approximately 18000 cm$^{-1}$ are generated by carrying out approximately 40,000 Lanczos recursion steps.

The energy levels and wave functions of the bound states of the HO$_2$ complex are obtained using the iterative Lanczos algorithm. The Lanczos states $|\psi_{\xi}\rangle$ are generated from a normalized state of $|\psi_{\eta}\rangle$38,39

$$ |\psi_{k+1}\rangle = \beta_k^{-1}(\hat{H}|\psi_k\rangle - \alpha_k|\psi_k\rangle - \beta_{k-1}|\psi_{k-1}\rangle), \ k \geq 1 \quad (2) $$

and

$$ \alpha_k = \langle \psi_k|\hat{H}|\psi_k\rangle - \langle \psi_k|\beta_{k-1}|\psi_{k-1}\rangle \quad (3) $$

$$ \beta_k = \langle \hat{H}|\psi_k - \alpha_k|\psi_k - \beta_{k-1}|\psi_{k-1}\rangle|\hat{H}|\psi_k - \alpha_k|\psi_k - \beta_{k-1}|\psi_{k-1}\rangle^{1/2} \quad (4) $$

where $\beta_0 = 0$ for the diagonal and sub/superdiagonal elements of the tridiagonal Lanczos matrix. When the total iteration steps are set as $N$, the corresponding eigenvalues and eigenvectors sets of the Lanczos matrix are $\{E^{(N)}\}$ and $\{z^{(N)}\} = \{z_1^{(N)}, \ldots, z_N^{(N)}\}$. Then, the wave functions can be expressed by eigenvectors with the basis set of Lanczos states $|\psi_k\rangle$, i.e.,

$$ |\psi_{\xi}\rangle = \sum_{k=1}^{N} z_{\xi}^{(N)} |\psi_k\rangle $$

The transition dipole moment $\mathcal{P}_{mk}$ can be calculated as

$$ \langle E_{mk}^{(N)}|\hat{\mu}|E^{(N)}\rangle $$

with the dipole moment $\hat{\mu}$. The transition dipole calculated using variational wave functions and dipole surfaces give results that depend on how the Cartesian axes of the dipole surface are defined. Sueur has suggested that the most consistent definition of these axes uses the rules proposed by Eckart for the separation of rovibrational motion.35 For the triatomic HO$_2$ system, the Eckart conditions can be easily satisfied by placing the molecule in the body-fixed $xz$ plane. The new set of axes $XZ$ are related to the original axes by a rotation through $\tau$ and

$$ \tan \tau = \frac{\sum_{i=1}^{3} m_i(x_i^e z_i - z_i^e x_i)}{\sum_{i=1}^{3} m_i(x_i^e x_i + z_i^e z_i)} \quad (5) $$

where the superscript $e$ means the reference coordinate, and $i$ is the atom index.

The dipole moment of HO$_2$ is computed at the DFT/PVTZ level with the M06 functional. In the region of $R \in [0.5,7.0]$ bohr, $r \in [1.0,5.5]$ bohr, and $\theta \in [0,\pi/2]$ radian at the Jacobi coordinate, 16770 available random Monte Carlo generated points are computed and fitted to the dipole moment surface. The RMSE values of the fits are 0.07 and 0.05 D for the projected components along the $x$ and $z$ directions, respectively, and the relative errors are less than 1% for both directions. A more reliable method, the complete active space self-consistent field (CASSCF) method (10 active orbital and 9 active electrons with cc-PVTZ basis set)36 is chosen to test the dipole moment values calculated by DFT.

### RESULTS AND DISCUSSION

In Figure 2, the fitted DMS is compared with the ab initio results in three dimensions of the H + OO Jacobi coordinates. It is clear that the fitting result provides a faithful representation of the DFT result. Compared to the CASSCF results, the DFT calculation overestimates the dipole moment overall but reproduces the trend along the three different directions. In this work, we focus on the general dipole transition behavior between molecular vibrational states, and thus, the behavior should be system independent. Therefore, the DFT method and NN fitting are suitable for the aim of present work, and the use of a more accurate and expansive ab initio method is unnecessary.

In Table 1, the calculated energies of the low-lying vibrational states are listed with some reported theoretical and experimental results, where $v_1$, $v_2$, and $v_3$ denote the vibrational quantum numbers for the H--O stretching, O--O stretching and bending modes, respectively. Our values are in good agreement with the previously obtained results, especially the result reported in Xie’s work (listed in the “spline” column).37 In fact, our calculation use the same PES and a slightly different basis set compared to that used in Xie’s work. The large basis set in our calculation makes the result reliable according to our tests about the convergence.
According to Fermi's golden rule, the vibronic transition moment $\langle \mu_{mk} \rangle$ between the different rovibrational states is an important parameter for the external photon field intervention reactions. In Figure 4, the statistical behaviors for the $|\mu_{mk}|^2$ values of the HO$_2$ system are shown by scatter plots. The nonzero vibronic transition moment is close to a band distribution in all of the panels, and the larger transition moment is close to a linear distribution. For much of the data, the vibronic transition moment is larger than $10^{-4}$, implying that the HO$_2$ system can be adjusted using high strength light. The linear distribution for the larger $|\mu_{mk}|^2$ is roughly determined by the selection rules of the Raman effect. The rule is that if the dipole moment has a linear or quadratic dependence on the coordinate, the vibronic transition dipole moment vanishes unless the relevant vibrational states are adjacent and both of them belong to the same vibrational mode.

Figure 4 shows an interesting case where the linear distribution of the large transition moment is destroyed for the high energy states. This must arise from the anharmonic and coupling effects between the different vibrational modes. Considering that the energy of the microwave radiation is very small, this feature must be useful for the microwave-involved reactions. When Fermi's golden rule of $2|\mu| \langle \mu \rangle \delta(\omega_{mk} - \omega)/h^2$ is used to consider the stimulated absorption and the emission of the photons in addition to the transition moment $|\mu_{mk}|$, the resonance part, which is described by the delta function, is also very important. We can use different frequencies of the photon to affect different reactions. For the HO$_2$ system, many $|\mu_{mk}|$ are nonzero, implying that we can use different photon frequencies to control this reaction. Obviously, this conclusion can be extended to other reactions.

The high-energy vibrational states in our calculations approach the reactive energy of the H + O$_2$ ↔ O + OH reaction. For these states, there is a larger transition moment relative to their adjacent states (difference of a few wave-numbers), as shown in Figure 4. We also know that the energy of microwave irradiation is in the 0.01−10.0 cm$^{-1}$ range. Therefore, in principle, microwave irradiation can be used to affect the H + O$_2$ ↔ O + OH reactions. Because of the rather large dipole moment of HO$_2$, the transition between the adjacent rotational states driven by microwave irradiation must occur very easily. However, the transition behavior of the rotational states is not the focal point of this work.

The bottom left panel of Figure 4 shows that the distribution of the larger transition moments is located along few lines. This means that in the absence of collision relaxation events, the high-energy states can release their energies to the vibrational ground state step by step through spontaneous transitions. This feature must be very useful in time-resolved vibrational spectroscopy.

In Figure 5, the scatter plot of the statistical behavior for the $\omega_{mk}|\mu_{mk}|^2$ (the factor of $\omega_{mk}$ comes from the difference between the spontaneous transition and the stimulated radiation, and $\omega_{mk}$ is the energy difference between the $m$ and $k$ states) values of the HO$_2$ system and the two possible energy release paths of the predissociation states of X$^3$ and X$^4$ are presented. The asymptotes of H + O$_2$ are marked by the purple star symbol on the axis. The purple arrows I−IV mark the four main emission bands in the energy range of 1300−7000 cm$^{-1}$, and the energy range agrees with the experimental results reported by Polanyi. Two possible energy release paths are shown by
the blue and green lines with the assignments of the corresponding states. The labels 21 to 211 indicate the pure O−O vibrational excitation states, the labels 11 to 13 indicate the pure O−H vibrational excitation, X1−X3 are the mixed states mainly involving the O−O vibrational excitation, and X4 is a mixed state involving the O−H vibrational excitation. In other words, the high-energy HO2 radical generated in the H + O2 ↔ O + OH reactions can release its energy via step by step photon emission, coinciding with the luminescence process in the combustion. We can see that the possible paths of the high-energy vibration energy release are abundant, which is not discussed in detail in this work. Examination of Figure 5 clearly shows that spontaneous emission in the microwave range is very unlikely due to the small Einstein coefficients increasing the small energy difference. This means that microwave light will be very effective in contributing energy into the system, which is the one of the intrinsic mechanisms of microwave heating.

In the present work, we focus on the calculation of the vibronic transition moment for the HO2 radical. The transition moment between the rotational states is also important for the microwave-induced reactions. We know that the dipole moment of the HO2 complex is large enough to induce rotational excitation. The rotational spectroscopy of the HO2 system had been studied by many experimental techniques. At a high-resolution level, dozens of rotational absorption peaks can be observed in all of the v1, v2 and v3 fundamental absorption bands. This feature of the rotational quantum states is also beneficial for microwave processes.

In Figure 6, the wave functions of the six high-energy vibrational states of HO2 are shown in the r−R plane, while the transition dipole moments between all of the calculated states and these six states are plotted in Figure 7. The state at 10,980 cm−1 is an excited one along the R direction, the states at 14,603, 16,400 and 17,473 cm−1 are mainly due to O−O excitations, while the states at 15,222 and 17,306 cm−1 are due to mixed excitations. We can see a few main peaks, and many of the visible peaks in the corresponding transition dipole moment plots are shown in Figure 7. If the approach of
photodynamics is to be used to intervene or control the $\text{H} + \text{O}_2 \leftrightarrow \text{O} + \text{OH}$ reactions, it must be frequency sensitive.

In Table 2, we list the energy differences and changes in the vibrational modes for three of the adjacent states that have larger transition dipole moments relative to each state shown in Figure 6. For the state at 10,980 cm$^{-1}$, there are three peaks located at $+35.7$, $-55.6$, and $-818.7$ cm$^{-1}$ relative to the 10 980 cm$^{-1}$ state, and these energy differences are in the infrared and far-infrared regions of the light spectrum. We can see that the vibrational modes have obvious changes for all of the three states. For example, the $v_1$, $v_2$, and $v_3$ vibrational modes change $-2$, $1$, and $6$ energy levels, respectively, even though the energy difference is only 35.7 cm$^{-1}$. For the higher energy states of 17 473 cm$^{-1}$, the three peaks are located at $-3.6$, $+12.1$, and $+21.7$ cm$^{-1}$ relative to 17 473 cm$^{-1}$ with energy differences in the microwave region. Here, as well, the vibrational modes change significantly for all of the states. This means that the mode-specific and bond-selective reactions should be affected by microwave irradiation in the complex region.

**CONCLUSIONS**

In summary, a procedure for the activation of chemical reactions in the complex region is proposed and discussed for a model $\text{H} + \text{O}_2 \leftrightarrow \text{O} + \text{OH}$ reaction system. Two important factors for the effective control of the reaction by microwave irradiation are investigated. The factors are (1) whether the transition dipole moment between the adjacent quantum states within the range of the microwave energy is large enough and
Table 2. Energy Differences (in cm⁻¹) and Changes in the Vibrational Modes for Three of the Adjacent States That Have a Larger Transition Dipole Moment Relative to Each State Shown in Figure 6*.

<table>
<thead>
<tr>
<th>energy levels</th>
<th>ΔE</th>
<th>Δν₁Δν₂∆ν₃</th>
<th>ΔE</th>
<th>Δν₁Δν₂∆ν₃</th>
<th>ΔE</th>
<th>Δν₁Δν₂∆ν₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 980</td>
<td>35.7</td>
<td>1^→2^3^₈</td>
<td>−55.6</td>
<td>1^→2^3^₈</td>
<td>−81.7</td>
<td>1^→2^3^₈</td>
</tr>
<tr>
<td>14 603</td>
<td>−4.6</td>
<td>1^→2^3^⁻²</td>
<td>10.2</td>
<td>1^→2^3^⁻¹²</td>
<td>62.0</td>
<td>1^→2^3^⁻¹¹</td>
</tr>
<tr>
<td>15 222</td>
<td>−34.2</td>
<td>1^→2^3^⁻⁷</td>
<td>62.4</td>
<td>1^→2^3^⁻³</td>
<td>−81.4</td>
<td>1^→2^3^⁻²</td>
</tr>
<tr>
<td>16 400</td>
<td>−8.8</td>
<td>1^→2^3^⁻¹⁸</td>
<td>17.2</td>
<td>1^→2^3^⁻⁷</td>
<td>12.7</td>
<td>1^→2^3^⁻¹¹</td>
</tr>
<tr>
<td>17 036</td>
<td>8.9</td>
<td>1^→2^3^⁻³</td>
<td>−37.4</td>
<td>1^→2^3^⁻³</td>
<td>−24.4</td>
<td>1^→2^3^⁻³</td>
</tr>
<tr>
<td>17 473</td>
<td>−3.6</td>
<td>1^→2^3^⁻³</td>
<td>12.1</td>
<td>1^→2^3^⁻¹¹</td>
<td>21.7</td>
<td>1^→2^3^⁻³</td>
</tr>
</tbody>
</table>

“The change of each vibrational mode is denoted by the corresponding superscript. For example, Δν₁Δν₂∆ν₃ = 1^→2^3^⁻³ represents the fact that the ν₁ and ν₂ modes are excited by 1 and 7 levels, respectively, and the ν₃ mode relaxes by 12 levels.

(2) whether the vibrational mode of the transition allowed adjacent states to change obviously. For the H + O₂ ↔ O + OH triatomic reaction, the answers to both questions are positive. In general, a system that has more atoms and a larger polarity is more likely to meet these two conditions. Without a loss of generality, the triatomic H + O₂ ↔ O + OH reaction is used to check for these two conditions numerically. The existence of a nonzero transition dipole moment between the two nearly degenerate vibrational states allows us to use microwave irradiation to affect complex reactions.

Furthermore, in our previous work, we proposed a theoretical description for both thermal effects and nonthermal microwave effects using the state-specific master equation approach. Microwave enhancement of reactivity arises from two important mechanisms. (1) The microwave absorption and emission dominated by the transition dipole moment between two corresponding states and the intensity of the microwave field may provide a new path to change the reaction rate constants. (2) In a strong microwave field, the distribution of the activated internal states of the molecules will deviate from the equilibrium distribution. The transition dipole moment plays a key role for both of the mechanisms. The existence of a nonzero transition dipole moment between two nearly degenerate vibrational states strongly supports our master equation results. And in our previous work, the mechanism of the microwave effect in chemical reactions had been discussed in detail.

A detailed analysis based on the vibrational structures of the corresponding wave functions shows that the change of the vibrational modes is obvious even when the energy difference between the two transition allowed states is very small (in few wavenumbers). This phenomenon shows that inexpensive and powerful microwave irradiation can be used to affect and possibly control mode-specific and bond-selective reactions. Our calculations also show that the predissociation state of the H + O₂ ↔ O + OH reactions can release its energy by step by step photon emission, which is a possible luminescence process in combustion.

The H + O₂ ↔ O + OH reaction plays an important role in the combustion processes. The reaction contains a relatively stable complex, and its reaction time is enough long to interact with microwave. The conclusions of this paper also can be applicable to other reactions involving complexes or long lifetimes, such as the OH + CO ↔ H + CO₂ and F + H₂O ↔ HF + OH reactions. As mentioned in ref 15, microwaves have a more effective acceleration for the slower reactions. Taking into account that the polyatomic molecules have a large vibrational state density and more stable structures, the above conclusions should be more important for polyatomic molecular reactions. Although this work focuses on the feasibility of using microwave irradiation to affect the mode-specific reactions, the conclusions in this paper are not limited to these reactions only.

■ AUTHOR INFORMATION

Corresponding Authors
*(J. Ma) E-mail: majianyi81@163.com.
*(S.L.) E-mail: slin@fzu.edu.cn.

ORCID

Dandan Ma: 0000-0002-6146-2001
Sen Lin: 0000-0002-2288-5415

Author Contributions

*These authors contributed equally to this work.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

J. Ma and S.L. acknowledge support from the National Natural Science Foundation of China (91441107, 21303110 and 21673040). We also thank Prof. Hua Guo, Bin Jiang and Jun Li for many useful discussions.

■ REFERENCES


7546

DOI: 10.1021/acs.jpca.8b06442
(39) DeSain, J. D.; Ho, A. D.; Taatjes, C. A. High-resolution diode laser absorption spectroscopy of the O-H stretch overtone band (2,0,0)→(0,0,0) of the HO2 radical. J. Mol. Spectrosc. 2003, 219, 163–169.