汤禹
日期:2021-12-30 阅读次数: 作者: 来源:


姓名: 汤禹
性别:

职称: 副教授
学历: 博士
专业: 物理化学
电子邮件: yu.tang@fzu.edu.cn
研究方向: 多相催化,原位表征技术,单原子催化,甲烷转化生物质转化



教育与工作经历


2019–至今,福州大学化学学院,副教授,博士生导师

2016-2019,美国堪萨斯大学化学与石油工程系,博士

2009-2012,浙江大学化学系,理学硕士

2004-2008,浙江大学化学系,理学学士



科研简介


研究方向:

(1) 发展原位表面化学技术用于多相催化研究

通过整合多种原位表征技术,包括原位红外、原位拉曼、NAP-XPS、原位XAS等,从多角度互补研究催化界面的真实结构和反应机制。与传统的非原位、离线表征技术相比,原位表征能够揭示出传统方法难以观测的信息,为研究领域提供全新视角。这些原位技术之间互为补充,能够提供全面的研究数据。

汤禹博士在仪器研发与操作方面具备丰富的经验,尤其是在近常压光电子能谱(NAP-XPS)领域具有较好的工作基础:(a)在仪器设计开发与搭建方面:在美国堪萨斯大学攻读博士学位期间,曾负责设计、安装并大量使用两套世界领先的近常压XPSNAP-XPS)设备(仪器见Chem. Rev. 119 (12), 6822-6905back cover);2019年加入福州大学后,主持搭建了一套真空互联的NAP-XPS-STM系统。该系统耦连了近常压STM和近常压XPS。其中,近常压XPS可以在室温至1000°CUHV25 mbar的条件下进行原位催化研究;(b)在原位表征技术的理论发展方面,撰写了多篇关于NAP-XPS技术发展的评论与研究文章,发表于高水平学术期刊(如Sci. Chin. Chem., 2025, 2867–2891; JPCC, 126 (31), 13069-13087; Nat. Chem., 2016, 8, 902-903),并参与编写了专著《Springer Handbook of Advanced Catalyst Characterization》的相关章节;(c)在原位表征技术在催化科学的基础研究中,不仅产出了一系列高质量原创成果,还与国内外同行广泛合作,为多种催化反应设计并执行原位表征实验,至今发表研究论文和合作论文130余篇,论文引用6000余次,H-index35,在国内外具有一定的学术影响力。

(2) 催化界面的动态重构机制与原位演变行为

在多相催化研究中,反应气氛下催化剂的动态界面重构机制已成为核心科学命题。现有研究表明,温度、压力及反应物流速等工况参数通过改变表面化学势,可诱导催化剂发生原子尺度结构演化——这种动态过程具有双重效应:一方面可能形成高活性的亚稳态表界面结构(如活性团簇,Nat. Catal., 2022, 5, 119-127; ACS Catal., 2024, 14, 24, 18679–18689;金属-载体强相互作用界面,Adv. Mater., 2021, 33, 202101536),另一方面也可能引发活性组分迁移、团聚甚至相变失活(ACS Catal., 14 (2024) 11845-11856; J Catal., 437 (2024) 115647; J Catal., 435 (2024) 115545; J Catal., 427 (2023) 115094)。因此,解析催化界面动态重构规律不仅能够揭示真实活性位点的形成与失活机制,更能为"抗烧结-自修复"智能催化剂的设计提供理论指导。通过原位表征技术捕捉动态演化路径,结合理论计算建立"化学势-结构演化-催化性能"的定量模型,将推动多相催化从经验试错向理性设计的范式转变,这对开发高稳定性工业催化剂具有重要科学价值与工程意义。

(3) 双活性位点协同催化机制与催化过程的绿色化 设计

多相催化领域的核心挑战之一在于如何精准调控活性位点的原子尺度结构以实现低温高效反应。传统单原子催化剂虽具有高原子利用率,但单一活性位点往往难以独立完成复杂反应的多步骤活化过程,导致催化路径受限、能垒过高。在催化剂的功能设计与性能构筑方面,提出双活性位点协同催化机制,通过耦合不同功能的催化活性位,有效降低催化反应所需要的温度,设计高活性、高稳定性的催化剂,在低碳烷烃和生物质分子转化中实现催化剂设计的绿色化。这一策略的关键在于:1)异质金属位点的吸附-反应行为互补性(J. Am. Chem. Soc. 2024, 146, 47, 32366–32382; J. Am. Chem. Soc., 2019, 141, 7283-7293; Nat. Energ., 2018, 3, 1042-1050);2)催化活性位的空间邻近效应调控吸附构型、氢溢流等动态过程(Appl. Catal. B, 341 (2024) 123244; ACS Catal., 14 (2024) 703-717);3)载体介导的EMSI、电荷传递与配位环境调控(J. Am. Chem. Soc. 2021, 143, 40, 16566–16579; Chin. J Catal., 74 (2025) 191–201; J Catal., 429 (2024) 115245)。此外,二维材料与沸石限域环境为稳定双活性位点、抑制烧结提供了理想平台(Nat. Commun. 16 (1), 2861; Nat. Commun., 9 (2018) 1231)。研究围绕双活性位点协同催化这一核心命题,系统探索了不同金属组合与载体体系的协同机制,揭示了原子尺度分工协作对低温高效催化的决定性作用。

近年来发表科研论文130余篇,其中以第一作者、共同第一作者或通讯作者的身份在Nature Catalysis, Nature Energy, J. Am. Chem. Soc. (3), Nature Communications (2), Angew. Chem. Int. Ed., Adv. Mater., Chem. Soc. Rev., ACS Catalysis (5), Science China Chemistry, Chinese Journal of Catalysis, Journal of Catalysis (5), Applied Catalysis B (2), Nano Letters等杂志上发表论文,成果多次被美国化学会C&EN报道。论文被引用超过6000次,H-index为35。

ORCID: ORCID iD iconhttps://orcid.org/0000-0001-9435-9310

Homepage: https://www.x-mol.com/groups/yutang/publications


科研项目


  • 国家自然科学基金,面上项目,主持,2025-2028,在研

  • 福建省自然科学基金,面上项目,主持,2024-2027,在研

  • 国家自然科学基金,青年基金(C类),主持,2020-2022,结题

  • 国家自然科学基金,联合基金(重点项目),参与方负责人,2020-2023,结题

  • 福建省自然科学基金,面上项目,主持,2020-2023,结题

  • 福州大学“旗山学者”(海外项目),科研启动,主持,2020-2024,结题



代表性论文(Selected Publication

  Full publication list avaliable at homepage: https://www.x-mol.com/groups/yutang/publications


╪: equal contribution, *: corresponding author


[1] G. Yan, Y. Tang, Y. Li, Y. Li, L. Nguyen, T. Sakata, K. Higashi, F.F. Tao,* P. Sautet,* Reaction product-driven restructuring and assisted stabilization of a highly dispersed Rh-on-ceria catalyst, Nature Catalysis, 5 (2022) 119-127.

[2] Y. Chen, B. deGlee, Y. Tang, Z. Wang, B. Zhao, Y. Wei, L. Zhang, S. Yoo, K. Pei, J.H. Kim, Y. Ding, P. Hu, F.F. Tao,* M. Liu,* A robust fuel cell operated on nearly dry methane at 500 °C enabled by synergistic thermal catalysis and electrocatalysis, Nature Energy, 3 (2018) 1042-1050.

[3] Y. Tang, G. Yan, S. Zhang, Y. Li, L. Nguyen, Y. Iwasawa, T. Sakata, C. Andolina, J.C. Yang, P. Sautet,* Franklin Tao,* Turning on Low-Temperature Catalytic Conversion of Biomass Derivatives through Teaming Pd1 and Mo1 Single-Atom Sites, Journal of the American Chemical Society, 146 (2024) 32366-32382.

[4] Y. Tang, V. Fung, X. Zhang, Y. Li, L. Nguyen, T. Sakata, K. Higashi, D.-e. Jiang, F.F. Tao,* Single-Atom High-Temperature Catalysis on a Rh<sub>1</sub>O<sub>5</sub> Cluster for Production of Syngas from Methane, Journal of the American Chemical Society, 143 (2021) 16566-16579.

[5] Y. Tang, Y. Wei, Z. Wang, S. Zhang, Y. Li, L. Nguyen, Y. Li, Y. Zhou, W. Shen, F.F. Tao,* P. Hu,* Synergy of Single-Atom Ni<sub>1</sub> and Ru<sub>1</sub> Sites on CeO<sub>2</sub> for Dry Reforming of CH<sub>4</sub>, Journal of the American Chemical Society, 141 (2019) 7283-7293.

[6] G. Zhang, F. Liu, S. Zhong, F. Liu,* Q. Zhu, Y. Tang,* J. Tan, A. Zheng,* L. Jiang,* F.-S. Xiao, Surpassing stoichiometric limitation for supra-multi-molar adsorption and separation of acid gases, Nature Communications, 16 (2025) 2861.

[7] Y. Tang, Y. Li, V. Fung, D.-e. Jiang, W. Huang, S. Zhang, Y. Iwasawa, T. Sakata, N. Luan, X. Zhang, A.I. Frenkel, F. Tao,* Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions, Nature Communications, 9 (2018) 1231.

[8] R. Li,* Z. Liu, Q.T. Trinh, Z. Miao, S. Chen, K. Qian, R.J. Wong, S. Xi, Y. Yan, A. Borgna, S. Liang, T. Wei, Y. Dai, P. Wang, Y. Tang*, X. Yan, T.S. Choksi,* W. Liu,* Strong Metal-Support Interaction for 2D Materials: Application in Noble Metal/TiB<sub>2</sub> Heterointerfaces and their Enhanced Catalytic Performance for Formic Acid Dehydrogenation, Advanced Materials, 33 (2021) 202101536.

[9] Y. Li, Y. Tang, F. Tao,* C-N Coupling through Hydroaminoalkylation on a Single-Atom Rh Heterogeneous Catalyst, Angewandte Chemie-International Edition, 62 (2023) 202214332.

[10] Y. Tang*, Y. Li, F. Tao,* Activation and catalytic transformation of methane under mild conditions, Chemical Society Reviews, 51 (2022) 376-423.

[11] Yuanjie Xu, Run Hou, Kunxiang Chi, Bo Liu, Zemin An, Lizhi Wu, Li Tan, Xupeng Zong, Yihu Dai, Zailai Xie, and Yu Tang*, A water-resistant and stable Pd-Co3O4 catalytic interface for complete methane oxidation with insights on active structures and reaction pathway, Chinese Journal of Catalysis, 74 (2025) 191–201.

[12] Y. Xu, Z. An, Y. Tang,* Recent progress in exploring heterogeneous catalyst surface chemistry with near ambient pressure XPS, Science China Chemistry, (2025) 1-25.

[13] Y. Xu, J. Yao, H. Lin, Q. Lv, B. Liu, L. Wu, L. Tan, Y. Dai, X. Zong, Y. Tang,* Functional CeO x Stabilized Metallic Ni Catalyst Supported on Boron Nitride for Durable Partial Oxidation of Methane to Syngas at High Temperature, ACS Catalysis, 14 (2024) 11845-11856.

[14] Y. Tang, X. Zong, L. Nguyen, F. Tao,* Single-Atom Catalyst Restructuring during Catalytic Reforming of CH4 by CO2, ACS Catalysis, 14 (2024) 18679-18689.

[15] H. Guo, J. Zhao, Y. Chen, X. Lu, Y. Yang, C. Ding, L. Wu, L. Tan, J. Long, G. Yang, Y. Tang,* N. Tsubaki,* X. Gu,* Mechanistic Insights into Hydrodeoxygenation of Lignin Derivatives over Ni Single Atoms Supported on Mo<sub>2</sub>C, ACS Catalysis, 14 (2024) 703-717.

[16] M. Li, C. Zhang, Y. Tang, Q. Chen, W. Li, Z. Han, S. Chen, C. Lv, Y. Yan, Y. Zhang, W. Zheng, P. Wang, X. Guo,* W. Ding, Environment Molecules Boost the Chemoselective Hydrogenation of Nitroarenes on Cobalt Single-Atom Catalysts, ACS Catalysis, 12 (2022) 11960-11973.

[17] S. Zhang, Y. Li, Z. Wang, Y. Tang, X. Huang, S.D. House, H. Huang, Y. Zhou, W. Shen, J. Yang, Coordination number-dependent complete oxidation of methane on NiO catalysts, ACS Catalysis, 11 (2021) 9837-9849.

[18] B. Liu, C. Xiang, J. Yang, P. Sun, Y. Yang, Y. Xu, K. Liu, L. Wu, L. Tan, Y. Tang,* The promoting role of carbon monoxide in mild conversion of methane to acetic acid on atomically dispersed Ir catalyst anchored in ZSM-5, Journal of Catalysis, (2024) 115683.

[19] P. Wang, R. Chen, H. Liao, H. Lin, Y. Xu, B. Liu, X. Zong, Y. Dai, L. Wu, L. Tan, Z. Xie, Y. Tang,* Zinc cations incorporated in Silicalite-1 zeolite assist in anchoring atomically dispersed platinum catalyst for boosted and robust propane dehydrogenation, Journal of Catalysis, (2024) 115647.

[20] Y. Xu, R. Chen, H. Lin, Q. Lv, B. Liu, L. Wu, L. Tan, Y. Dai, X. Zong, Y. Tang,* Constructing the Ni-O-Ce interface to enhance the activity and stability for partial oxidation of methane to syngas under high temperatures, Journal of Catalysis, 435 (2024) 115545.

[21] Z. An, N. Ma, Y. Xu, H. Yang, H. Zhao, L. Wu, L. Tan, C. Zou, F. Meng, B. Zhang, X. Wang, Y. Tang,* Shape dependency of CO2 hydrogenation on ceria supported singly dispersed Ru catalysts, Journal of Catalysis, 429 (2024) 115245.

[22] Y. Xu, Z. An, X. Yu, J. Yao, Q. Lv, H. Yang, Z. Lv, H. Guo, Q. Jiang, W. Liu, L. Wu, L. Tan, Y. Dai, Y. Tang,* Enhanced catalytic stability and structural evolution of Rh-BN interface in dry reforming of methane under intensified CO2 partial pressure, Journal of Catalysis, 427 (2023) 115094.

[23] K. Xu, Y. Chen, H. Yang, Y. Gan, L. Wu, L. Tan, Y. Dai, Y. Tang,* Partial hydrogenation of anisole to cyclohexanone in water medium catalyzed by atomically dispersed Pd anchored in the micropores of zeolite, Applied Catalysis B-Environment and Energy, 341 (2024) 123244.

[24] P. Wang, J. Yao, Q. Jiang, X. Gao, D. Lin, H. Yang, L. Wu, Y. Tang,* L. Tan,* Stabilizing the isolated Pt sites on PtGa/Al2O3 catalyst via silica coating layers for propane dehydrogenation at low temperature, Applied Catalysis B-Environmental, 300 (2022) 120731.

[25] Y. Tang, S. Zhang, T.B. Rawal, L. Nguyen, Y. Iwasawa, S.R. Acharya, J. Liu, S. Hong, T.S. Rahman,* F. Tao,* Atomic-Scale Structure and Catalysis on Positively Charged Bimetallic Sites for Generation of H2, Nano Letters, 20 (2020) 6255-6262.

[26] L. Wu,* Z. Ren, Y. He, M. Yang, Y. Yu, Y. Liu, L. Tan, Y. Tang,* Atomically Dispersed Co2+ Sites Incorporated into a Silicalite-1 Zeolite Framework as a High-Performance and Coking-Resistant Catalyst for Propane Nonoxidative Dehydrogenation to Propylene, ACS Applied Materials & Interfaces, 13 (2021) 48934-48948.

[27] P. Wang, M. Yang, H. Liao, K. Xu, X. Zong, Z. Xie, H. Zhao, Y. Xu, H. Yang, Y. Gan, Y. Fang, L. Wu, Y. Tang,* L. Tan,* Restructured zeolites anchoring singly dispersed bimetallic platinum and zinc catalysts for propane dehydrogenation, Cell Reports Physical Science, 4 (2023) 101311.

[28] H. Guo, Y. Chen, J. Yang, L. Wu, L. Tan, G. Yang, Y. Tang,* N. Tsubaki,* X. Gu,* Water treatment induced formation of surface oxide layers of Pd/α-MoC catalyst to enhance the selective hydrodeoxygenation of vanillin, Chemical Engineering Journal, 493 (2024) 152507.

[29] H. Yang, R. Yu, Y. Fang, J. Yao, Y. Gan, J. Chen, H. Deng, X. Gao, X. Zong, J. Wang, L. Wu, L. Tan,* Y. Tang,* Singly dispersed Ir<sub>1</sub>Ti<sub>3</sub> bimetallic site for partial oxidation of methane at high temperature, Applied Surface Science, 599 (2022) 153863.

[30] Y. Tang, S. Xu, Y. Dai, X. Yan, R. Li, L. Xiao, J. Fan,* Solid phase metallurgy strategy to sub-5 nm Au-Pd and Ni-Pd bimetallic nanoparticles with controlled redox properties, Chemical Communications, 50 (2014) 213-215.


学术专著

[1] F. Tao; Y. Tang ; Springer Handbook of Advanced Catalyst Characterization,Springer Nature, 2023, Chapter 17.



获奖情况

  • 2020 福州大学旗山学者(海外项目)

  • 2021 福建省高层次引进人才(海外B类)

  • 2021 福州大学优秀本科毕业论文指导教师

  • 2021 福州大学化学学院青年教师最佳一节课教学竞赛一等奖

  • 2022 福州大学第二十三届青年教师 最佳一节课教学竞赛,理工科组,优秀奖

  • 2024 福州大学优秀硕士毕业论文指导教师

  • 2024 13th Natural Gas Conversion Symposium, Best Poster Award, 指导教师



学术兼职

  • 《Catalysis Communications》,青年编委(2022-2024),客座编辑(2023-2024)

  • 《Applied Catalysis O: Open》,青年编委(2024-至今),客座编辑(2024-至今)



发明专利


[1] 汤禹,徐开阳,安泽民,单原子钯/分子筛催化剂及其制备与在生物质分子选择性加氢制备酮中的应用,专利授权,专利号:ZL 2021103280343,授权号:CN113019435B



教学工作

  • 2019年-至今,结构化学,化学专业

  • 2025年-至今,晶体化学,化学专业

  • 2021年-至今,材料物理化学,研究生课程

  • 2023年-至今,功能材料研究进展,研究生课程


其他

  • 欢迎具有化学、应用化学、化学工程等相关专业背景的同学报考研究生。

  • 2025年硕士招生专业:物理化学,应用化学,材料化学;2025年博士计划招生专业:物理化学。

  • 欢迎本科生同学参与科研训练项目(SRTP),科研训练与毕业设计。



上一篇:谭理
下一篇:陈岚岚